Mecp2-Null Mice Provide New Neuronal Targets for Rett Syndrome
نویسندگان
چکیده
BACKGROUND Rett syndrome (RTT) is a complex neurological disorder that is one of the most frequent causes of mental retardation in women. A great landmark in research in this field was the discovery of a relationship between the disease and the presence of mutations in the gene that codes for the methyl-CpG binding protein 2 (MeCP2). Currently, MeCP2 is thought to act as a transcriptional repressor that couples DNA methylation and transcriptional silencing. The present study aimed to identify new target genes regulated by Mecp2 in a mouse model of RTT. METHODOLOGY/PRINCIPAL FINDINGS We have compared the gene expression profiles of wild type (WT) and Mecp2-null (KO) mice in three regions of the brain (cortex, midbrain, and cerebellum) by using cDNA microarrays. The results obtained were confirmed by quantitative real-time PCR. Subsequent chromatin immunoprecipitation assays revealed seven direct target genes of Mecp2 bound in vivo (Fkbp5, Mobp, Plagl1, Ddc, Mllt2h, Eya2, and S100a9), and three overexpressed genes due to an indirect effect of a lack of Mecp2 (Irak1, Prodh and Dlk1). The regions bound by Mecp2 were always methylated, suggesting the involvement of the methyl-CpG binding domain of the protein in the mechanism of interaction. CONCLUSIONS We identified new genes that are overexpressed in Mecp2-KO mice and are excellent candidate genes for involvement in various features of the neurological disease. Our results demonstrate new targets of MeCP2 and provide us with a better understanding of the underlying mechanisms of RTT.
منابع مشابه
FXYD1 is an MeCP2 target gene overexpressed in the brains of Rett syndrome patients and Mecp2-null mice.
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder linked to heterozygous de novo mutations in the MECP2 gene. MECP2 encodes methyl-CpG-binding protein 2 (MeCP2), which represses gene transcription by binding to 5-methylcytosine residues in symmetrically positioned CpG dinucleotides. Direct MeCP2 targets underlying RTT pathogenesis remain largely unknown. Here, we report that FXYD1,...
متن کاملMeCP2 functions largely cell-autonomously, but also non-cell-autonomously, in neuronal maturation and dendritic arborization of cortical pyramidal neurons.
Rett syndrome is a human neurodevelopmental disorder presenting almost exclusively in female infants; it is the second most common cause of mental retardation in girls, after Down's syndrome. The identification in 1999 that mutation of the methyl-CpG-binding protein 2 (MECP2) gene on the X chromosome causes Rett syndrome has led to a rapid increase in understanding of the neurobiological basis ...
متن کاملHippocampal synaptic plasticity is impaired in the Mecp2-null mouse model of Rett syndrome.
Rett syndrome is an X-linked neurodevelopmental disorder caused by mutations in the gene encoding the transcriptional repressor methyl-CpG-binding protein 2 (MeCP2). Here we demonstrate that the Mecp2-null mouse model of Rett syndrome shows an age-dependent impairment in hippocampal CA1 long-term potentiation induced by tetanic or theta-burst stimulation. Long-term depression induced by repetit...
متن کاملMeCP2 Deficiency in Neuroglia: New Progress in the Pathogenesis of Rett Syndrome
Rett syndrome (RTT) is an X-linked neurodevelopmental disease predominantly caused by mutations of the methyl-CpG-binding protein 2 (MeCP2) gene. Generally, RTT has been attributed to neuron-centric dysfunction. However, increasing evidence has shown that glial abnormalities are also involved in the pathogenesis of RTT. Mice that are MeCP2-null specifically in glial cells showed similar behavio...
متن کاملMetabolic Fingerprints of Altered Brain Growth, Osmoregulation and Neurotransmission in a Rett Syndrome Model
BACKGROUND Rett syndrome (RS) is the leading cause of profound mental retardation of genetic origin in girls. Since RS is mostly caused by mutations in the MECP2 gene, transgenic animal models such as the Mecp2-deleted ("Mecp2-null") mouse have been employed to study neurological symptoms and brain function. However, an interdisciplinary approach drawing from chemistry, biology and neuroscience...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008